Differential Calculus MCQ
Competitive Exams, Entrance Exams are conducted on MCQ. Click HERE to understand the Forms, Structure, Rules of MCQ, techniques of understanding, analysing and selection correct answer of MCQ,
Play the Video explaining some interesting aspects of selection of correct answer of MCQ.
For Complete resources on Mathematics MCQ
For Complete resources on Calculus
1. If y = 5x5 then find value of
(a) 25x5
(b) 625x
(c) 25x4
(d) 5
y = 5. So,
(5x5) = 5 X (5 X x 5 – 1) = 25x4
So, option (c) is correct
2. If y = 200 then find value of
(a) 200x
(b) 200
(c) 0
(d) 1
(200) = 0. So, option (c) is correct
3. y = + x + 1 . Evaluate
(a) 2x + 2
(b) 2x + 1
(c) 2x + 3
(d) 2x2 + 2x + 1
y = x2 + x + 1, So, (x2 + x + 1)
= (x2) +
(x) +
(1)
= {2. x 2 – 1}+ (1.x. 1–1} + 0
= 2x+1+0 = 2x+1
So, option (b) is correct
4. y = (x + 1)2. Evaluate
(a) 2(x + 1)
(b) 2x + 1
(c) x + 1
(d) x2 + 1
(x + 1)2 = x2 + 2x + 1.
So, (x2 + 2x + 1)
= (x2 ) +
(2x) +
( 1)
= 2x+2+0= 2(x+1)
So, option (a) is correct
5.
(a) 1 / (2)
(b) 1 / ()
(c) 2
(d)
y = . So,
(
) =
(x1/2) =
{x(1/2)-1}
= {x(-1/2)} =
So, option (a) is correct
6. If f(x) = x2 + 1 then Evaluate f’ (x) at x = 2
(a) 8
(b) 2
(c) 6
(d) 4
f (x ) = x2 + 1. So, f'(x) = (x2 + 1) =
(x2) +
(1)
= 2x + 0=2x. When x=2, f'(x) = 2x = 2 X 2 = 4
So, option (d) is correct
7. If f(x) = 4x4 + 4x3 + 2x2 + 1 Evaluate f’ (1)
(a) 29
(b) 24
(c) 26
(d) 35
f (x) = 4x4 + 3x3 + 2x2 + 1.
So, f'(x) = (4x4 + 3x3 + 2x2 + 1)
= (4x4) +
(3x3)+
(2x2)+
(1)
=4.(4).(x3 ) + 3.(3).(x2)+ 2.( 2).(x0)+ 0
=16x3 + 9x2 + 4x. So, f'(1)
= 16.(1)3 + 9.(1)3 + 4.(1) = 16+9+4=29
So, option (a) is correct
8. f(x) = 2x3 + 3x2 – 12x, for what values of x, f'(x) = 0.
(a) 4,1
(b) – 1, – 2
(c) 1, – 2
(d) 6, 3
f (x) = 2x3 + 3x2 – 12x. f'(x) = (2x3 + 3x2 – 12x)
= (2x3 ) +
(3x2 ) –
(12x).
=2.(3). (x2 )+ 3. (2). x – 12.(1) = 6x2 + 6x – 12.
Now 6x2 + 6x – 12 =0. Or, 6 (x2 + x – 2) = 0,
Or, x2 + x – 2 = 0, Or, x2 + 2x – x – 2 = 0
Or, x(x + 2) – 1 (x + 2) = 0, Or, (x + 2) (x – 1) = 0,
Or, x = 1, Or, x = – 2
So, option (c) is correct
9. y = (x + 1) (2×3 – 21). Evaluate
(a) 8x3– 6x2 + 21
(b) 8x3+ 6x2 – 21
(c) 8x3– 6x2 – 21
(d) 6x2– 4x
Let (x + 1) =u and (2x3 – 21)=v. So, y=uv.
We know (uv)=v
(u)+u
(v)
So, {(x + 1) (2x3 – 21)}
= {(2x3 – 21) X ((x + 1)} + {(x + 1) X
(2x3 – 21)}
= (2x3 – 21) (1.x 1 – 1+ 0) + (x + 1) (2. 3. x 3 – 1 – 0)
= (2x3 – 21) (x0 + 0) + (x + 1) (6x2)
= {(2x3 – 21) X 1} + 6x3 + 6x2 = 8x3 + 6x2 – 21
So, option (b) is correct
10. y = (x + 1) (x + 2). Evaluate
(a) 2x + 3
(b) 2(x + 3)
(c) 4x + 3
(d) x + 1
Let (x + 1) =u and (x+2)=v. So, y=uv.
We know (uv)=v
(u)+u
(v)
=
{(x+ 1) (x + 2)}
={(x+ 1) X (x + 2)} + {(x + 2)x
(x+1)}
= {(x + 1) (x0 + 0)} + {(x + 2) (x0 + 0)}
= (x + 2) .1 + (x + 1).1 = x + 2 + x + 1 = 2x+3
So, option (a) is correct
11. y = x .ex. Evaluate
.
(a) 1
(b) x2 ex + ex
(c) x2 ex + 2ex
(d) ex + xex
=
(x . ex) = {(x .
(ex)} + ex . (x
)
= ex. 1 + x. ex = ex + xex
So, option (d) is correct
12. y=2x. Evaluate (y)
(a) 2x
(b)
(c) 2
(d) 0
y = 2x. So, (2y)=2.
(x)+x.
(2)=2. 1 + x. 0 = 2.
So, 2nd derivative (y) =
(2)=0
So, option (d) is correct
13. y = x .log x. Evaluate (y)
(a) log x
(b) 1 + log x.
(c) 1/x
(d) 3x
y = x. log x. So, (y)=
(x.logx.)
={x.(logx)}+ {log x.
(x)}
=x.(1/x) + lox x. (1) = 1+log x
The second order differential (y) = dy/dx (1+log x)
= dy/dx (1) + dy/dx (log x) = 0+ 1/x = 1/x
So, option (c) is correct
14. y = 2x4 Evaluate is
(a) 36x3
(b) 12x4
(c) 16x3
(d) 24x2
y = 2x 4.(y)=
(2x 4) = 2.
(x 4) + x 4.
(2)
=2 x 4 x (x3) + x 4. 0 = 8x3
So, the second derivative d2y/dx2 (y) =(8x3)
= 3 X 8 X (x3-1) = 24x2 .
So, option (d) is correct
15. y = log x. Evaluate (y)
(a) 1/ x2
(b) -4x2
(c) – 1/ x2
(d) x
y = log x. So,(y)=
(logx)=
So, the second derivative d2y / dx2 (y) =(
)
=(x-1) = -1 X
x-1-1) = – (x -2) = -1 / x2
So, option (c) is correct
16. y = x (1 – x)2 . Evaluate
(a) 2(x – 2)
(b) 6x – 4
(c) 2x – 62
(d) 4x – 3
y = x (1 – x)2 = x (1 – 2x + x2).
So, (y)=
{x(1 – 2x + x2) }=
{ x (1 – 2x + x2) }
= (1 – 2x + x2). (x) + x
(1 – 2x + x2)
= {(1 – 2x + x2) . 1 } + x {(0 – 2. 1. x0 + 2. x. 2 – 1 }
= (1 – 2x + x2) + x ( – 2 + 2. x) =1 – 2x + x2 – 2x + 2x2
= 3x2 – 4x + 1
So, the second derivative d2y/dx2 (y) ==
(3x2 – 4x + 1)
= (3. 2. x2 – 1 ) – ( 4. x 1 – 1 ) + 0
= 6x – 4. x0 = 6x – 4. 1 = 6x – 4
So, option (b) is correct
17. If y = 5x – 9 Evaluate
(a) 5
(b) 6
(c) 0
(d) 12
y = 5x – 9. So, (y)=So,
(5x-9)
=(5x) –
(9) = 5.
(x) – 0 = 5 X 1 – 0 = 5 – 0=5
So, the second derivative d2y/dx2 (y) ==
(5) = 0
So, option (c) is correct
18. If y = 2x3 – 3x2 -36x + 10 then y is maximum at
(a) 85
(b) 107
(c) 95
(d) 54
y = 2x3 – 3x2 – 36x + 10, So, (y)=
(2x3 – 3x2 – 36x + 10)
= (2 X3 X x2) – (3 X 2 X x) – (36 X 0) +0
= 6x2 – 6x – 36.
For stationery values, (y)=0, So, 6x2 – 6x – 36 = 0,
Or, 6x2 + 12x – 18x – 36 = 0 Or,
6x (x + 2) – 18 (x + 2) = 0,
Or, (x + 2) (6x – 18) = 0, Or, (x + 2) (6x – 18) = 0,
Or, (x + 2) X 6X (x – 3) = 0, x = 3 or, x = – 2
Now d2y/dx2 (y) =(6x2 – 6x – 36) . = 12x -6
For x=3, d2y/dx2 (y) = (12X3) – 6 = 36-6=30.
For x=-2, d2y/dx2 (y) = (12X(-2)) – 6
= -24 -6 =-30 (negative).
So, value of y is maximum at x = – 2.
So, y (maximum) = 2x3 – 3x2 – 36x + 10
= 2 (– 2)3 – 3. (– 2)2 – 36. (– 2) + 10
= 2. (– 8) – 3. 4 + 72 + 10 = -16 -12 +72 +10 = 54
So, option (d) is correct
19. y = (2 – x)2. Evaluate .
(a) 2(2 – x)
(b) 2x – 4
(c) X + 3
(d) 12 – x
y=(2 – x) 2 = 4 – 4x + x2 .
So (4 – 4x + x2) = 0 -4 +2x = 2x-4
So, option (b) is correct
20. If , evaluate (1+
) when x= 1.
(a) 12
(b) 16
(c) 3
(d) 4
, so,
(y) =
(x3) = 3 (x2) .
So 1+= 1+ 3x2 = 1+ {3 x (1)2} = 1+ 3=4
So, option (d) is correct
21. Find the gradient of the curve y = 2x3 –3x2 – 12x + 8 at x = 0
(a) – 12
(b) 12
(c) 8
(d) 4
y = 2x3 -3x2 – 12x + 8. So,
= 2. (3x2 )– 3. ( 2x ) – 12. 1. x0 + 0
= 6x2 -6x -12
So, gradient of the curve at x=0, is 6. (0) – 6. (0) – 12
= 0 – 0 – 12 = – 12
So, option (a) is correct
22. y = x(x – 1) (x – 2). Evaluate .
(a) 3x2 – 6x + 2
(b) – 6x + 20
(c) 3x2 + 2
(d) 4x2 + 5
Let x=u, (x – 1) =v, (x – 2)=w. Then (y) =
(uvw)
= { vw X (u)} + {uw X
(v)} + {uv X
(w)}
= {(x – 1) ((x – 2)} X 1} + {x (x – 2) X (1 -0) } + {x(x – 1) X (1-2)}
= {(x2 – x – 2x + 2) X 1} + {(x2 – 2x) X 1} + {(x2 – x) X-1
= (x2 – 3x + 2) + (x2 – 2x) + x2 – x
= x2 – 3x + 2 + x2 – 2x + x2 – x = 3x2 – 6x + 2
So, option (a) is correct
23. If y = x3, evaluate 1+
(a) – 5
(b) 5
(c) 3
(d) 4
y = x3. So =3x3-1 = 3x2 .
So =
(3x2) = 6x.
So, +1 = 6x +1
= 6 x (-1) +1 = – 6 +1= -5
So, option (a) is correct
24. If the total cost function is C = x3 – 2x2 – 5x, find Marginal Cost (MC)
(a) 3x2 + x + 2
(b) 3x2 – 4x + 5
(c) 4x2 – 3x + 2
(d) None
We know MC = (C) =
(x3 – 2x2 – 5x)
= { 3(x3-1 ) – 4(x1-0 )+ 5 } = 3x2 – 4x + 5
So, option (b) is correct