Competitive Exams, Entrance Exams are conducted on MCQ. Click HERE to understand the Forms, Structure, Rules of MCQ, techniques of understanding, analysing and selection correct answer of MCQ,
Play the Video explaining some interesting aspects of selection of correct answer of MCQ.
Complete resources on Mathematics MCQ
For Complete resources on Calculus
Limits & Continuity MCQ
1.Value of {(2x2+9x+9) / (2x2+7x+3)} is
(a)
(b)
(c)
(d)
{(2x2+9x+9) / (2x2+7x+3) }
= { (2x2+9x+9) } / {
(2x2+7x+3) }
= {(2x2+6x+3x+9) } / {
(2x2+6x+x+3) }
= {(2x(x+3)+3(x+3)} /
{2x(x+3)+1(x+3)}
=(2x+3)(x+3))} / {
(2x+1)(x+3)}
= (2x+3) /
(2x+1) =
=
=
.
So, option (a) is correct
2. Value of {(x2 – 3x-4) / (x2– 2x-8)} is
(a)
(b)
(c)
(d)
{(x2 – 3x-4) / (x2-2x-8)}
= {(x2 + x – 4x -4) / (x2 +2x – 4x -8)}
= [{ x (x+1) – 4 (x+1)} / {x (x+2) – 4 (x+2)}}]
= { (x+1) (x– 4) / (x+2) (x– 4)} =
{(x+1) / (x+2)
=.
So, option (b) is correct
3. Find Value of [(x2 – 4) / {√(x+2) – √(3x-2)}
(a) – 3
(b) – 4
(c) – 5
(d) – 8.
[(x+2)( x-2) / {√(x+2) – √(3x-2)}
= [(x+2)( x-2) {√(x+2) + √(3x-2)} / {√(x+2) – √(3x-2)} {√(x+2) + √(3x-2)}
[multiplying numerator and denominator by {√(x+2) + √(3x-2)}]
[(x+2)( x-2) {√(x+2) + √(3x-2)} / {√(x+2)2 – √(3x-2)2}
= [(x+2)( x-2) {√(x+2) +√(3x-2)} / {(x+2) – (3x-2)}]
= [(x+2)( x-2) {√(x+2) +√(3x-2)} / {(x+2- 3x+2)}]
= [(x+2)( x-2) {√(x+2) +√(3x-2)} / (4-2x)]
= [(x+2)( x-2) {√(x+2) +√(3x-2)} / -2(x-2)]
= [(x+2){√(x+2) +√(3x-2)} / -2]
= [(2+2){√(2+2) +√{(3 X2) -2)} / -2]
= 4 ( √4 + √ 4) / -2 = (4 (2+2)} / – 2 = 16 / -2 = – 8
So, option (d) is correct
4. Value of [(x2 – 4) / (x+2)] is
(a) 4
(b) – 4
(c) 7
(d) – 6
[(x2 – 4) / (x+2)] =
[{(x + 2) (x – 2)} / (x+2)]
= (x – 2) = -2 – 2 = – 4. So, option (b) is correct
5. Value of {(3x – 1) / x ] is
(a) 103log103
(b) log3e
(c) loge3
(d) 1
{(3x – 1) / x ] = loge3. [We know,
(ax-1) / x = logea ]
So, option (c) is correct
6. Evaluate {(x3 – t3) / (x2 – t2)}
(a)
(b)
(c)
(d) 1
{(x3 – t3) / (x2 – t2)} =
[ {(x – t) (x2 + x t + t2)} / {(x – t) (x + t)}
= [ {(x2 + x t + t2)} / (x + t)}
= (t2 + t2 + t2) / (t + t) = (3 t2) / 2t =
So, option (c) is correct
7. Evaluate {(4x4 + 5x3. 7x2 + 6x) / (5x5 + 7x2 + x) ]
(a) 6
(b) 9
(c) 11
(d) 8
{(4x4 + 5x3. 7x2 + 6x) / (5x5 + 7x2 + x)]
= {(x{(4x3 + 5x3 . 7x + 6)} / x(5x4 + 7x + 1)}
{{(4x3 + 5x37.x + 6)} / (5x4 + 7x + 1)}
= = 6
So, option (a) is correct
8. Evaluate {(x2 – 16) / (x- 4)}
(a) 8
(b) – 8
(c) 10
(d) 12
{(x2– 16) / (x- 4)} =
{(x – 4) (x+4) / (x- 4)}
= (x+4) = 4+4=8
So, option (a) is correct
9. Evaluate {( ex – e-x) / x ]
(a) ex
(b) 3
(c) 1
(d) 2
{( ex – e-x) / x ] =
[{ ex ( ex – e-x) } / ( ex. x) ]
[multiplying numerator & denominator by ex].
[ {(e2x -1 ) } / ( ex. x)} =
{(e2x -1 ) / x} X (1 / ex)]
= {(e2x -1 ) / x} X
(1 / ex)
Let 2x=z, so x=z / 2. (z 0, when x
0).
So, {(e2x -1 ) / x} X
(1 / ex)
= {(ez -1 ) / (z/2) } X 1 / 1 (as
ex =1)
= 2 X {(ex -1 ) / x = 2 X 1 X 1 =2
So, option (d) is correct
10. If f(x) = then evaluate {f(4 + h) – f(4)} / h
(a) 4h
(b) 15 + 2h
(c) 2h + 11
(d) 3h
f(x) = 2x2 – x + 2
So , f(4+h) = 2. (4+h)2 – (4+h) + 2
= 2 (16 + 8h + h2) – 4 – h + 2
= 32 + 16h + 2h2 – h – 2 = 30 + 15h + 2h2
Again, f(4) = 2. (4)2 – 4 + 2 = 2. 16 – 4 + 2 = 32 – 2 = 30
So, f(4+h) – f(4) = (30 + 15h + 2h2 ) – 30
= 15h + 2h2 = h (15 + 2h)
So, {f(4+h) – f(4)} / h = {h (15 + 2h)} / h = (15 + 2h)
So, option (b) is correct
11. Evaluate {(2x2 + 5x – 7) / (3x2 – 7x + 9)}
(a) 0
(b)
(c)
(d)
{(2x2 + 5x – 7) / (3x2 – 7x + 9)}
= {((2 +
–7 / x2) / (3 – 7 / x2 + 9 / x2)
[Dividing numerator & denominator by x2]
= =
. [When
,
= 0 (also
1 / x2 =0)]
So, option (d) is correct
12. Evaluate √((1+x2) – √((1-x2)} / x]
(a) 3
(b) 0
(c) – 1
(d) 4
√((1+x2) – √((1-x2)}/ x]
= √{(1+x2) – √((1-x2)} X
√{(1+x2) + √((1-x2)} / { x
√{(1+x2) + √((1-x2)}]
(Multiplying numerator & denominator by √{(1+x2) + √((1-x2)}]
= (1 + x2 – (1-x2)} / {x
√{(1+x2) + √((1-x2)}]
= 2x2 / {x
√{(1+x2) + √((1-x2)}]
= [(2x ) / {
√{(1+x2) + √((1-x2)}]
= {2 X 0 / (√1 + √1)} = =
= 0
So, option (b) is correct
13. Evaluate √((x+h) – √x} / h, if h>0
(a) 3√x
(b) √x
(c) 1 / 2√x
(d) x
[{√((x+h) – √x} / h]
= √((x+h) – √x} {
√((x+h) + √x} / √((x+h) + √x}
(Multiplying numerator & denominator by {√((x+h) + √x}
= {√(x+h)2 – (√x)2} /
√((x+h) + √x}
= {(x + h – x)} /
√(x+h) + √x}]
h /
√{(x+h) + √x}}]
= 1 /
√(x+h) + √x}]
= 1/ √(x+0) + √x}] = 1 / (2√x)
So, option (c) is correct
14. Evaluate (x2+1) / (x+1)}
(a) 2
(b) 1
(c) 3
(d) 4
(x2+1) / (x+1)} = (12 + 1) / (1+1) =
= 1
So, option (b) is correct
15. Evaluate {(x2 – 1) / (x-1)}
(a) 1
(b) 2
(c) 5
(d) 7
(x2 – 1) / (x-1)} =
(x – 1) (x+1)} / (x-1) }
= (x+1) = 1+1 =2
So, option (b) is correct
16. Evaluate [{1-
(1-x)} / x]
(a)
(b)
(c)
(d)
(1-x)} / x}
= [(1-x) } X
(1-x) } / {x
(1-x) } ]
Multiply numerator & denominator by (1 + 1 – x)
{(12 –
(1-x2)} / (x(1 +
1 – x)} =
(1-1+x)
(1-1+x) / (x(1 +
(1 – x) =
{x / (x(1 +
(1 – x)}
= 1 / (1+1 – 0) =
= 2
So, option (d) is correct
17. If f(x) = x2, evaluate,
(a) 2x
(b) x
(c) – x
(d) 3
f(x) = x2, So, f (x + h) = (x + h) 2 = x2 + 2xh + h2.
[{f(x + h) – f(x)} / h] =
[{(x2 + 2xh + h2) – x2 / h}]
= [{(2xh + h2) / h}]=
(2x + h) = 2x.
So, option (a) is correct
18. Evaluate (6-5x2) / (4x+15x2)}
(a)
(b)
(c) 0
(d) Limit does not exist
(6-5x2) / (4x+15x2)}
= (6 / x2 – 5) / (
+ 15)} ((Dividing numerator & denominator by x2)
= (6 X 1/ x2 – 5) / (4 X
+15)}
=
= =
So, option (b) is correct
19. Evaluate {(x2 +4x+3) / (x2 – 7x -8)}
(a)
(b) –
(c)
(d)
{(x2 + 4x +3) / (x2 – 7x -8)}
= {(x2 +x+3x+3) / (x2 + x – 8x -8)}
=
So, option (b) is correct
20. If (x9-a9) / (x-a)} =9, find the value of a.
(a) 9, -9
(b) 1, -1
(c) 8, – 8
(d) None of these
(x9-a9) / (x-a)} =9.a9-1.
= 9a8 ((x9-a9) / (x-a)} = n.an-1)
So, 9a8 =9, or a8 =1, or a8 = 1,
So, option (b) is correct
22. Evaluate {(2x2 + 7x +5) / (4x2 +3x + 1)}
(a)
(b)
(c)
(d) 3
{(2x2 +7x+5) / (4x2 +3x + 1)}
= {(2+
+5/ x2) / (4 +
+ 1 / x2)}
Multiply numerator & denominator by 1 / x2.
(as
1 / x2 =0) =
=
So, option (b) is correct
23. (3 / x2 + 2)
(a) 1
(b) 9
(c) 2
(d) 7
(3 / x2 + 2) =
(3 X 1 / x2 + 2)= 0+2 = 2 (as
1 / x2 = 0)
So, option (c) is correct