Integral Calculus MCQ

Competitive Exams, Entrance Exams are conducted on MCQ.  Click HERE to understand the Forms, Structure, Rules of MCQ, techniques of understanding, analysing and selection correct answer of MCQ,

Play the Video explaining some interesting aspects of selection of correct answer of MCQ.

Complete resources on Mathematics MCQ 

For Complete resources on Calculus

Integral Calculus MCQ

1 Integrate x11 with respect to x.

(a)        x11 + C

(b)        X11/12 + C

(c)        X12/12 + C

(d)        x12 + C

We know  xn dx = (xn + 1) / (n+1).

So, x11 dx = {(x11 + 1) / (11+1)}  + C =  {(x12) / (12)} + C

So, option (c) is correct

2. Integrate x 11 with respect to x.

(a)        x-9 / – 9 + C

(b)        X-10 / -10 + C

(c)        X-11 / -11+ C

(d)        x12 + C

 We know  xn dx = (xn + 1) / (n+1).

So, x-11 dx = {(x-11 + 1)/(-11+1)}  + C

=  {(x-10) / (-10)} + C

So, option (b) is correct

3. \displaystyle Integrate\text{ }\frac{1}{{{{x}^{n}}}}\text{ with respect to x}\text{.}

(a)        (x-n /- n) + C

(b)        x1-n/(1-n) + C

(c)        (x-n +1/n +1)+ C

(d)        1

We know  xn dx = (xn + 1) / (n+1).

1/ xn = x-n. So, x-n dx = {(x-n + 1) / (-n+1)}  + C

=  {(x1-n) / ( 1-n)} +C

So, option (b) is correct

4. \displaystyle Integrate\text{ }\frac{1}{x}\text{ with respect to x}

(a)           ax 1  + C

(b)           log (x) + C

(c)           Log (2) + C

(d)          \displaystyle \frac{1}{x}  + C

We know  \displaystyle \frac{1}{x}= x-1.  So, x-1  dx =\displaystyle \int{{\frac{1}{x}}}dx = log x +C

So, option (b) is correct

5. Integrate \displaystyle 5\sqrt{x}~\text{ dx} with respect to x.

(a)           \displaystyle \frac{5}{6}{{x}^{{6/5}}}+C 

(b)            \displaystyle \frac{2}{5}{{x}^{{2/5}}}+C

(c)            \displaystyle \frac{2}{5}{{x}^{{5/2}}}+C

(d)           None of the above

  \displaystyle \int{{5\sqrt{x}\text{ dx=5}\sqrt{x}}}   dx 5 (x)1/2 dx =  5. (x) (1/2+1)  = 5. {(x) (1/2+1) } / (\displaystyle \frac{1}{2} +1)

= 5. {(x) (3/2) / \displaystyle \left( {\frac{3}{2}} \right) +C ={5. \displaystyle \left( {\frac{2}{3}} \right). (x) (3/2)  +C = \displaystyle {\frac{{10}}{3}} . x (3/2) + C

This value matches none of the options. So, option (d) is correct

6. Integrate \displaystyle \int{{x\sqrt{x}\text{ dx}}}.

(a)           x2/5 +C

(b)          \displaystyle \frac{4}{5}  x 2/5 +C

(c)            \displaystyle \frac{2}{5} x 5/2 +C

(d)           None of the above

  x√x dx  =  x1.x1/2 .dx =    x3/2.dx  = { x3/2+1 / ( \displaystyle \frac{3}{2} +1) } +C

= ( x5/2 / \displaystyle \frac{5}{2} )  +C =  \displaystyle \frac{2}{5} x5/2 + C

So, option (c) is correct

7. Integrate \displaystyle \int{{{{\text{e}}^{{-4x}}}\text{ dx}}}

(a)       e 4x

(b)      4e 4x

(c )      e 4x  / ( – 4)

(d)      e 4x  / 4

We know   \displaystyle \int{{}}emx dx = emx / m (m \displaystyle \ne 0).

 So, \displaystyle \int{{}} e– 4x dx = e– 4x / (-4) + C

So, option (c) is correct

8. Integrate \displaystyle \int{{{{5}^{{2x}}}\text{ dx}}}

(a)       5 x / loge5

(b)      5/ loge5

(c )      52x  / 2loge5

(d)      1

We know, \displaystyle \int{{}}amx dx = amx / (mlogea) +C.

So, \displaystyle \int{{}}52x dx = 52x  / (2loge5) +C

So, option (c) is correct

9. Integrate \displaystyle \int{{}}{(e 4x+ e 2x ) / e 2x  } dx
(a)       ex + e– x
(b)      ex – e– x
(c)       e2x + e4 x
(d)      (e2x / 2) + x

\displaystyle \int{{}}{(e 4x + e 2x ) / e 2x } dx

\displaystyle \int{{}}[{(e 4x / e 2x ) + (e 2x  / e 2x) }  dx

=   \displaystyle \int{{}}(e 4x-2x ) + (e 2x-2x) } dx

=  \displaystyle \int{{}}{(e 4x-2x ) + 1} dx

=  \displaystyle \int{{}} {(e 2x ) + 1 }  dx = (e 2x  / 2) + x 

[as \displaystyle \int{{}}emx dx = emx / m (m ¹ 0)]

 So, option (d) is correct

10. Evaluate \displaystyle \int{{}} (1 – x)3 dx

(a)         https://dvidya.com/integral-calculus-mcq/(1-x)4 +C

(b)       \displaystyle \frac{1}{4}(1-x)4 +C

(c)     1 – x2

(d)     x2

Let 1 – x = t, So,  \displaystyle \frac{{dt}}{{dx}}(1-x) = -1.  Or,  \displaystyle \frac{{dt}}{{dx}}=-1, Or  dx= \displaystyle \frac{{dt}}{{-1}} 

So, \displaystyle \int{{}} (1 – x)3 dx = \displaystyle \int{{}} t3 . \displaystyle \frac{{dt}}{{-1}} = \displaystyle \int{{}} t3. (– 1) dt = (-1) \displaystyle \int{{}} t3. Dt

= (-1). (t3+1 / (3+1) = (-1). (t4 / 4)  + C

=  \displaystyle -\frac{1}{4}t4 +C = \displaystyle -\frac{1}{4} (1-x)4 +C

So, option (a) is correct

11. Evaluate \displaystyle \int{{}} log x dx

(a)       x log x – x + c

(b)     \displaystyle \frac{1}{x}

(c)       x log x – 1 + c

(d)      log x

Let us logx as 1st function and 1 as second function.

So, \displaystyle \int{{}} log x dx = \displaystyle \int{{}} (log x) . (1)  dx

= (log x) \displaystyle \int{{}} (1) dx  –  \displaystyle \int{{}}{\displaystyle \frac{d}{{dx}} (log x) .  (1)} dx 

= (log x) \displaystyle \int{{}} (1) dx  –  \displaystyle \int{{}} \displaystyle \frac{d}{{dx}}(log x) \displaystyle \int{{}} (1) } dx 

= x. (log x) – \displaystyle \int{{}} \displaystyle \frac{1}{x}. x dx

= x. (log x) –\displaystyle \int{{}} \displaystyle \frac{1}{x}. x dx = x. (log x) – \displaystyle \int{{}}dx

= x log x – x  +C   = x (log x – 1) +C

So, option (a) is correct

12. Evaluate \displaystyle \int{{}} (5 + 2x)2 dx

(a) \displaystyle \frac{1}{3}(5 + 2x)3 + C           
(b) \displaystyle \frac{1}{6}(5 + 2x)3 + C
(c) \displaystyle \frac{1}{2}(5 + 2x)3 + C
(d)  2x3+ C

Let 5 + 2x = t. So, \displaystyle \frac{{dt}}{{dx}}=\displaystyle \frac{d}{{dx}} (5+2x) =2. So, dx=\displaystyle \frac{{dt}}{2}  
So \displaystyle \int{{}} (5 + 2x)2 dx = t2 + \displaystyle \frac{1}{2}dt =   \displaystyle \frac{1}{2}\displaystyle \int{{}} t2.dt
= \displaystyle \frac{1}{2} {(t((2+1) / (2+1)} + C =\displaystyle \frac{1}{2}  {(t3 / 3)} + C
=  \displaystyle \frac{1}{6}t3 + C =  \displaystyle \frac{1}{6} (5 + 2x)3 + C.
So, option (b) is correct

13. Value of  is \displaystyle \int\limits_{3}^{6}{{{{x}^{2}}dx}}\text{ is}
(a) 46
(b) 210
(c) 63
(d) 72

\displaystyle \int_{3}^{6}{{{{x}^{2}}}}dx
\displaystyle =\left[ {\frac{{{{x}^{{2+1}}}}}{{2+1}}} \right]_{3}^{6}
\displaystyle =\left[ {\frac{{{{x}^{3}}}}{3}} \right]_{3}^{6}
\displaystyle =\frac{{{{{(6)}}^{3}}}}{3}-\frac{{{{{\left( 3 \right)}}^{3}}}}{3}
\displaystyle =\frac{{216}}{3}-\frac{{27}}{3}
= 72 – 9 = 63

14. Evaluate: \displaystyle \int_{1}^{2}{{\log x\text{ dx}}}
(a) log 2 – 1
(b) 2 log 2 + 1
(c) 2 log 2 – 1
(d) 1

\displaystyle \int_{1}^{2}{{\log x\text{ dx}}}
\displaystyle I=\log x
\displaystyle {\left{ {\frac{d}{{dx}}(\log x)\int{{1.dx}}} \right}}
\displaystyle x\log x-\int{{\frac{1}{x}}}.xdx
\displaystyle x\log x-\int{{dx}}
= x log x – x  = x (log x – 1)
\displaystyle \therefore \int_{1}^{2}{{\log x\text{ dx}}}
\displaystyle =\int_{1}^{2}{{x(\log x-1)}}
\displaystyle =\left[ {x(\log x-1)} \right]_{1}^{2}

= [2. (log 2 – 1)] – [1. (log 1 – 1)]
= 2 log 2 – 2 – [1. (0 – 1)]
= 2 log 2 – 2 – [1.(– 1)]
= 2 log 2 – 2 + 1 = 2 log 2 – 1
So, option (c) is correct

15. \displaystyle Find\text{ }\int_{1}^{2}{{\log x\text{ dx}}}
(a)\displaystyle \frac{{{{e}^{4}}}}{2}
(b) \displaystyle {{{e}^{2}}}
(c) \displaystyle {{{e}^{4}}}
(d) \displaystyle \frac{1}{2}\left( {{{e}^{4}}-{{e}^{2}}} \right)

\displaystyle \int_{1}^{2}{{{{e}^{{2x}}}\text{ dx}}}
\displaystyle \int{{{{e}^{{2x}}}\text{ dx}=\frac{{{{e}^{{2x}}}}}{2}}}\left[ {\int{{{{e}^{{mx}}}dx\frac{{{{e}^{{mx}}}}}{m}}}} \right]
Now \displaystyle \int_{1}^{2}{{{{e}^{{2x}}}\text{ dx}}}
\displaystyle =\left[ {\frac{{{{e}^{{2x}}}}}{2}} \right]_{1}^{2}
\displaystyle =\left[ {\frac{{{{e}^{{22}}}}}{2}} \right]-\left[ {\frac{{{{e}^{{21}}}}}{2}} \right]
\displaystyle =\frac{{{{e}^{4}}}}{2}-\frac{{{{e}^{2}}}}{2}
\displaystyle =\frac{1}{2}\left( {{{e}^{4}}-{{e}^{2}}} \right)
So, option (d) is correct