Competitive Exams, Entrance Exams are conducted on MCQ. Click HERE to understand the Forms, Structure, Rules of MCQ, techniques of understanding, analysing and selection correct answer of MCQ,
Play the Video explaining some interesting aspects of selection of correct answer of MCQ.
Complete resources on Mathematics
Complete resources on Logarithm
Logarithm MCQ
1. Which one is correct?
(a) log (m + n) = log m + log n
(b) log (m – n) = log m – log n
(c) logb a x loga b =1
(d) None of these.
logb a x loga b = loga a x logb b = 1 x 1 = 1. So, option (c) is correct
2. Find the value of log b a . logc b . loga c
(a) abc
(b) 0
(c) 1
(d) 4.
logb a. logc b. loga c = (logc a. logb b). loga c = (logc a x 1) loga c = logc a x loga c = loga a. logc c = 1 x 1 = 1. So, option (c) is correct
3. If log 2 = 0.30103, then the value of log 200 is
(a) 18.0103
(b) 6.30103
(c) 4.30103
(d) 2.30103
log 200 = log (2 x 100) = log 2 + log 100 = log 2 + 2 log 10 = 0.30103 + 2 X 1 = 2.30103
(we know log 2 = 0.30103, log 10 = 1). So, option (d) is correct
4. log 144 is equal to
(a) 2 log 4 + 2 log 2
(b) 4 log 2 + 2 log 3
(c) 3 log 2 + 4 log 3
(d) None of these.
- 2 log 4 + 2 log 2 = log 42 + log 22 = log 16 + log 4 = log (16 x 4) = log 64
- 4 log 2 + 2 log 3 = log 24 + log 32 = log 16 + log 9 = log (16 x 9) = log 144
- 3 log 2 + 4 log 3 = log 23 + log 34 = log 8 + log 81 = log (8 x 81) = log 648
So, option (b) is correct
5. The relation loge x + loge (1 + x) = 0 is equal to
(a) x2 + x + e = 2
(b) x2 + x – e = 3
(c) x2 + x – 1 = 0
(d) x2 + x + 4 = 0.
loge x + loge (1 + x) = 0, Or, loge x(1 + x) = 0, Or, x(1 + x) = e0, Or, x + x2 = 1, Or, x2 + x – 1 = 0. So, option (c) is correct
6. Find value of (½)log10 (25) – 2 log10 (3) +log10 (18)
(a) 0
(b) 1
(c) 3
(d) 2.
log10[an1] 25 – 2 log10 3 + log10 18= log 10 25 ½ – log 10 32 +log 10 18 = log 10 5 – log 10 9 +log 10 18
(log 10 5 – log 10 9) + log 10 18 = log 10 (5/9) + log 10 18 = log 10 [5 X 18)/9] = log 10 10 = 1.
So, option (b) is correct
7. If log10 2 = 0.3010, the value of log10 80 is
(a) 1.9030
(b) 1.6020
(c) 2.9030
(d) 4.9030.
Log10 80=log10 (8 X 10) = log10 8 + log10 10 = log10 23 + 1 = 310 log 2 + 1
= 3 x 0.3010 + 1 = 0.9030 + 1 = 1.9030. So, option (a) is correct
8. Find the value of log3 (27)3
(a) 27
(b) 9
(c) 729
(d) 81.
log3 (27)3 = 3 log3 (27)= 3 log3 33 = (3 X 3) log3 3 = 9 log33 = 9 X1 = 9 (we know log3 3 = 1).
So, option (b) is correct
9. If log3 (log2 x) = 1, Find the value of x
(a) 10
(b) 9
(c) 3
(d) 8
log3 (log2 x) = 1, or, log3 (log2 x) = 1, Now, log2 x = 31 = 3, Or, x = 23 = 8, So, option (d) is correct
10. If log4 (x2 + x) – log4 (x + 1) = 2, then:
(a) x = 8
(b) x = 4
(c) x = 6
(d) x = 16.
log4 (x2 + x) – log4 (x + 1) = 2, or, log4 [(x2 + x) / (x + 1)] =2. Or, [(x2 + x) / (x + 1)] = 42 = 16
Or, x2+ x = 16(x + 1), Or, x2+ x = 16x + 16, Or, x2+ x – 16x – 16 = 0 , Or, x(x +1) – 16(x +1) = 0
Or, (x +1) (x -16), Either x = -1 or, x = 16, So, option (d) is correct
11. Value of (log10 125 / log10 25) = ?
a. 5
b.
c.
d.
(log10 125 / log10 25) = (log10 53 / log10 52) = 3 log10 5 / 2 log10 5 = 3/2. So, option (b) is correct
12. If log8 m + log8 2=2/3, then find the value of m
(a) 1
(b) 3
(c) 2
(d) 4
log8 m + log8 2=2/3, or, log8 (m X 2) + =2/3, or, log8 2m =2/3,
So, 8 (2/3) = 2m. or, {23}(2/3) = 2m. Or, 22 = 2m, Or, m = 2. So, option (c) is correct
13. Value of 7 log10 (16/15)+ 5 log10 (25/24)+ 3 log10 (81/80)
(a) 2
(b) log10 2
(c) log10 3
(d) log10 5
7 log10 (16/15)+ 5 log10 (25/24)+ 3 log10 (81/80)
= 7 {log10 16 – log1015)} + 5 {log10 25 – log10 24} + 3 [{ (log10 34) – log10 (80}]
= 7 {log10 24 – log10 (5 X 3)} + 5 {log10 52 – log10 (8X3)} } + 3 { log10 (34)- log10 (24 X 5)}
= 7 { 4log10 2 – ( log10 5 + log10 3)} + 5 {2 log10 5- (log10 23 + log103) } + 3 { 4log10 3 – (4log10 2 + log10 5)}
= 28 log10 2 – 7 log10 5- 7 log10 3 +10 log10 5 – 15 log10 2 – 5 log10 3 + 12 log10 3 – 12 log 10 2- 3 log 10 5
= log 10 2. So, option (b) is correct
14. If log10 p + log10q = log10 (p + q), which one of the following relations is true?
(a) p=(q/q-1)
(b) 3p=q=0
(c) 3p=q2/(1-q)
(d) p=q=2
log10 p + log10 q = log10 (p + q), Or, log10 (pq) = log10 (p + q), Or, pq = p + q, Or, pq – p = q,
Or, p(q – 1) = q, or, p=(q/q-1). So, option (a) is correct
15. If log [(x+y)/5] = ½ (logx + log y), find value of (x/y) + y/x)
(a) 20
(b) 23
(c) 25
(d) 18.
log [(x+y)/5] = ½ (logx + log y), or, log [(x+y)/5] = ½ log (xy), or, log [(x+y)/5] = ½ log (xy),
log [(x+y)/5] = log [(xy) ½ ]. Or, (x+y)/5 = (xy) ½, or {(x+y)/5}2 = (xy), or, (x2 + y2 + 2xy) / 25=xy
or, (x2 + y2 + 2xy) =25xy, x2 + y2=23xy, or, (x2 + y2) / xy =23,
Now, (x/y) + y/x) = (x2 + y2) / xy = 23. So, option (b) is correct
16. If log (2a – 3b) = log a – log b, then a =
(a) 3b² / (2b – 1)
(b) 3b3 / (2b – 1)
(c) b²/[4 (2b + 1)]
(d) None of the above
log (2a – 3b) = log a – log b, or, log (2a – 3b) = log (a/b). or, 2a-3b=a/b, Or, 2ab – 3b2 = a
Or, 2ab – a = 3b2, Or, a(2b – 1) = 3b2, or a= 3b2/ (2b – 1). So, option (a) is correct
17. Find value of log (a2/bc) + log (b2/ac) + log (c2/ab)
(a) 1
(b) 0
(c) 3
(d) log a
log (a2/bc) + log (b2/ac) + log (c2/ab)
= (log a2 – log bc) + (log b2 – log ac) + (log c2 – log ab)
= log a2 + log b2 + log c2 – (log bc + log ac + log ab)
= log a2 b2 c2 – log (bc. .ab)
= log a2 b2 c2 – log a2 b2 c2 = 0. So, option (b) is correct
18. If log (m/n) + log (n/m) = log (m+n) then find true statement
(a) m+n=1
(b) m/n=2
(c) m – n = 2
(d) m2 – n2 = 4
log (m/n) + log (n/m) = log (m+n), or log {(m/n) X (n/m)} = log (m+n), or log1=log (m+n). or m+n=1. So, option (a) is correct
19. If loga3= 1/3, then find value of a
(a) 27
(b) 81
(c) 9
(d) 24.
loga3= 1/3, So, a1/3=3, or a=(3)3 = 27. So, option (a) is correct
20. Find the value of log2 (1/64)
(a) 6
(b) -6
(c) 64
(d) 4.
log2 (1/64) = log2 (1/26) = log2 1 – 6log2 2 = 0 – (6X 1) = -6 (as log2 2= 1). So, option (b) is correct
21. logx(16/25) = -1/2, Find value of x
(a) 625/256
(b) 256/625
(c) 526/265
(d) 32/50
logx(16/25)=-1/2. Or x(-1/2) =16/25, or 1/{x(1/2)} =16/25, or x(1/2)} = 25/16, or x=252/162= 625/256. So, option (a) is correct
22. If logx10000 = -1/4, find x
(a) | 1/10 | √ |
(b) | 1/100 | |
(c) | 1/20 | |
(d) | 1/1000 |
logx10000 = -1/4, so, (10000)-1/4= x, or 1/ (10000)1/4 = x, or x= 1/{(104)}1/4 = 1/10.
So, option (a) is correct
23. Find value of log10 (0.00001)
(a) – 5
(b) 1/5
(c) – 4
(d) 5
log10 (0.00001) = log10 (1/100000) = log10 (1/105) = log10 10-5) = 5 log10 = -5 X1= – 5 .
So, option (a) is correct
24. If log10 x + log10y = z, then find value of x
(a) z/y
(b) 10/3z
(c) 10z/y
(d) yz
log10 x + log10 y = z, or Or, log10 (xy) = z, 10z = xy, x=10z/y. So, option (c) is correct
25. Find value of log10 5 assuming log10 2 = 0.3010
(a) .4010
(b) 0.6911
(c) 0.6990
(d) .6021.
log10 5 = log10 (10/2) = log10 10 – log10 2 = 1- 0.3010 =0.6990. So, option (c) is correct
26. Find value of (log5 3) x (log3 625)
(a) 1
(b) 2
(c) 3
(d) 4.
log5 3 x log3 625 = log 3 3 x log5 625 (by change of base) = 1 x log5 54 = log5 54 = 4 log5 5 = 4X1=4. So, option (d) is correct
27. If log(x2 – 6x + 10) = 0, then the value of x is
(a) 4
(b) 7
(c) 3
(d) 5.
log (x2 – 6x + 10) = 0, Or, log( x2 – 6x + 10) = log 1, x2 – 6x + 10=1, or x2 – 6x + 10 – 1 = 0
Or, x2 – 6x + 9 = 0, Or, x2 – 3x – 3x + 9 = 0, Or, x (x – 3) – 3(x – 3) = 0, Or, (x – 3) (x – 3) = 0, or x = 3. So, option (c) is correct
28. Find x, if log43 + log4(x + 2) = 2
(a) 10/3
(b) 4/3
(c) 2/3
(d) 12/5
log4 3 + log4 (x + 2) = 2, log4 {3 X (x+2)} =2, or, log4 {3x+6)} =2,
Or, 42 = 3x + 6 Or, 3x+ 6 = 16 Or, 3x = 16- 6 = 10 Or, x = 10/3. So, option (a) is correct
29. If a2 + b2 = 23ab, evaluate log {(a+b)/5}
(a) 5
(b) log(ab) /2
(c) log(ab) /5
(d) log(a+b) /4
a2 + b2 = 23ab, Or, a2 + b2 + 2ab = 23ab + 2ab, Or, (a + b)2 = 25ab, {(a+b)/5)}2=ab, or (a+b/5)=(ab) ½
or log {(a+b/5)}=log {(ab) ½ } = ½ log ab = {log(ab)} /2. So, option (b) is correct
30.Evaluate {1/logab(abc)} + {1/logbc(abc)} + {1/logca(abc)}
(a) 0 (b) 1 (c) 2 (d) 3 |
{1/logab(abc)} + {1/logbc(abc)} + {1/logca(abc)}
= log abc (ab) + log abc (bc) + log abc (ca) = log abc (ab . bc . ca), = log abc (abc)2 |
= 2 log abc abc = 2.1 = 2. So, option (c) is correct
31. If log (2a – 3b) = log a – log b, find value of a
(a) 3b2/(2b – 1)
(b) 3b/2b – 1
(c) 2b2/(4b + 2)
(d) 2b2/2b – 1
log (2a – 3b) = log a – log b, Or, log (2a – 36) = log (a/b), Or, 2a – 3b = a/b
Or, 2ab – 3b2 = a, Or, 2ab – a = 3b2, Or, a(2b – 1) = 3b2, or a=3b2 / (2b – 1). So, option (a) is correct
32. If log (a+b/4) = 1/2 (log a + log b), then find value of (a/b + b/a)
(a) 18 (b) 14 (c) 15 (d) 10 |
log (a+b/4) = 1/2 (log a + log b), or log (a+b/4) = log (ab)1/2, or, (a+b/4) =(ab)1/2,
or {(a+b)2}/16 = ab, Or, a2 + 2ab + b2 = 16ab, or, a2 + b2 = 14ab, (a2 + b2) / (ab) = 14, (a/b + b/a) =14. So, option (b) is correct |