Logarithm MCQ

Competitive Exams, Entrance Exams are conducted on MCQ.  Click HERE to understand the Forms, Structure, Rules of MCQ, techniques of understanding, analysing and selection correct answer of MCQ,
Play the Video explaining some interesting aspects of selection of correct answer of MCQ.
Complete resources on Mathematics
Complete resources on Logarithm

Logarithm MCQ

1. Which one is correct?

(a)    log (m + n) = log m + log n

(b)    log (m – n) = log m – log n

(c)    logb a x loga b =1

(d)    None of these.

logb a x loga b = loga a x logb b = 1 x 1 = 1. So, option (c) is correct

2. Find the value of log b a . logc b . loga c

(a)    abc

(b)    0

(c)    1

(d)    4.

logb a. logc b. loga c = (logc a. logb b). loga c = (logc a x 1) loga c = logc a  x  loga c = loga a. logc c = 1 x 1 = 1. So, option (c) is correct

3. If log 2 = 0.30103, then the value of log 200 is

(a)    18.0103

(b)    6.30103

(c)    4.30103

(d)    2.30103

log 200 = log (2 x 100) = log 2  +  log 100 = log 2  +  2 log 10 = 0.30103 + 2 X 1 = 2.30103

(we know log 2 = 0.30103, log 10 = 1). So, option (d) is correct

4. log 144 is equal to

(a)    2 log 4 + 2 log 2

(b)    4 log 2 + 2 log 3

(c)    3 log 2 + 4 log 3

(d)    None of these.

  • 2 log 4 + 2 log 2 = log 42 + log 22 = log 16 + log 4 = log (16 x 4) = log 64
  • 4 log 2 + 2 log 3 = log 24 + log 32 = log 16 + log 9 = log (16 x 9) = log 144
  • 3 log 2 + 4 log 3 = log 23 + log 34 = log 8 + log 81 = log (8 x 81) = log 648

So, option (b) is correct

5. The relation loge x + loge (1 + x) = 0 is equal to

(a)    x2 + x + e = 2

(b)    x2 + x – e = 3

(c)    x2 + x – 1 = 0

(d)    x2 + x + 4 = 0.

loge x + loge (1 + x) = 0, Or,  loge x(1 + x) = 0, Or, x(1 + x) = e0, Or, x + x2  = 1, Or, x2 + x – 1 = 0. So, option (c) is correct

6. Find value of  (½)log10 (25) – 2 log10 (3) +log10 (18)

(a)      0

(b)     1

(c)      3

(d)     2.

 log10[an1]  25 – 2 log10  3 + log10 18= log 10 25 ½ –  log 10 32 +log 10 18 = log 10 5 –  log 10 9 +log 10 18

(log 10 5 –  log 10 9) + log 10 18 = log 10 (5/9) + log 10 18 = log 10 [5 X 18)/9] = log 10 10 = 1.

So, option (b) is correct

7. If log10 2 = 0.3010, the value of log10 80 is

(a)    1.9030

(b)    1.6020

(c)    2.9030

(d)    4.9030.

Log10 80=log10 (8 X 10) = log10  8  + log10 10 = log10  23 + 1 = 310 log  2 + 1

= 3 x 0.3010 + 1 = 0.9030 + 1 = 1.9030. So, option (a) is correct

8. Find the value of log3 (27)3

(a)    27

(b)    9

(c)    729

(d)    81.

log3 (27)3 = 3 log3 (27)= 3 log3 33    = (3 X 3) log3 3  = 9 log33 = 9  X1 = 9 (we know log3 3 = 1).

So, option (b) is correct

9. If log3 (log2 x) = 1, Find the value of x

(a)    10

(b)    9

(c)    3

(d)    8

log3 (log2 x) = 1, or, log3 (log2 x) = 1, Now, log2 x = 31 = 3, Or, x = 23 = 8, So, option (d) is correct

10. If log4 (x2 + x) log4 (x + 1) = 2, then:

(a)    x = 8

(b)    x = 4                                          

(c)    x = 6                                          

(d)    x = 16.                              

log4 (x2 + x) – log4 (x + 1) = 2,  or, log4 [(x2 + x) / (x + 1)] =2. Or, [(x2 + x) / (x + 1)] = 42 = 16

Or, x2+ x = 16(x + 1), Or, x2+ x = 16x + 16, Or, x2+ x – 16x – 16 = 0 , Or, x(x +1) – 16(x +1) = 0

Or, (x +1) (x -16), Either   x = -1  or,  x = 16, So, option (d) is correct

11. Value of  (log10 125 / log10 25) = ?

a. 5

b. \displaystyle \frac{3}{2}.

c. \displaystyle \frac{1}{2}

d. \displaystyle \frac{1}{6}

(log10 125 / log10 25) = (log10 53 / log10 52) = 3 log10 5 / 2 log10 5 = 3/2. So, option (b) is correct

12. If log8 m + log8 2=2/3, then find the value of m

(a)    1

(b)    3

(c)    2

(d)    4

log8 m + log8 2=2/3, or, log8 (m X 2) + =2/3, or, log8 2m =2/3,

So, 8 (2/3) = 2m. or, {23}(2/3) = 2m. Or, 22 = 2m, Or, m = 2. So, option (c) is correct

13. Value of 7 log10 (16/15)+ 5 log10 (25/24)+ 3 log10 (81/80)

(a)    2

(b)    log10 2

(c)    log10 3

(d)    log10 5

7 log10 (16/15)+ 5 log10 (25/24)+ 3 log10 (81/80)

= 7 {log10 16 –  log1015)} + 5 {log10 25 – log10  24} + 3 [{ (log10  34) – log10 (80}]

= 7 {log10 24 –  log10 (5 X 3)} + 5 {log10 52 – log10 (8X3)} } + 3 { log10  (34)- log10 (24 X 5)}

= 7 { 4log10 2 – ( log10 5 + log10 3)} + 5 {2 log10 5- (log10 23 + log103) } + 3 { 4log10  3  – (4log10 2 + log10 5)}

= 28 log10  2 – 7 log10  5- 7 log10 3 +10 log10  5 – 15 log10 2 – 5 log10 3 + 12 log10  3 – 12 log 10 2- 3 log 10 5

= log 10 2. So, option (b) is correct

14. If log10 p + log10q = log10 (p + q), which one of the following relations is true?

(a)    p=(q/q-1)

(b)    3p=q=0

(c)    3p=q2/(1-q)

(d)    p=q=2

log10   p + log10  q = log10  (p + q), Or,  log10   (pq) = log10  (p + q), Or,  pq = p + q, Or,  pq – p = q,

Or,  p(q – 1) = q, or, p=(q/q-1). So, option (a) is correct

15. If log [(x+y)/5] = ½ (logx + log y), find value of  (x/y) + y/x)

(a)       20

(b)       23

(c)       25

(d)       18.

log [(x+y)/5] = ½ (logx + log y), or, log [(x+y)/5] = ½ log (xy), or,  log [(x+y)/5] = ½ log (xy),

log [(x+y)/5] = log [(xy) ½ ].  Or, (x+y)/5 = (xy) ½, or {(x+y)/5}2 = (xy), or, (x2 + y2 + 2xy) / 25=xy

or, (x2 + y2 + 2xy) =25xy,  x2 + y2=23xy, or, (x2 + y2) / xy =23,

Now, (x/y) + y/x) = (x2 + y2) / xy = 23. So, option (b) is correct

16. If log (2a 3b) = log a log b, then a =

(a)       3b² / (2b – 1)

(b)       3b/  (2b – 1)

(c)       b²/[4 (2b + 1)]

(d)       None of the above

log (2a – 3b) = log a – log b, or, log (2a – 3b) = log (a/b). or, 2a-3b=a/b, Or, 2ab – 3b2 = a

Or, 2ab – a = 3b2, Or, a(2b – 1) = 3b2, or a= 3b2/ (2b – 1). So, option (a) is correct

17. Find value of log (a2/bc) + log (b2/ac) + log (c2/ab)

(a)    1

(b)    0

(c)    3

(d)    log a

log (a2/bc) + log (b2/ac) + log (c2/ab)

= (log a2 – log bc) + (log b2 – log ac) + (log c2 – log ab)

= log a2 + log b2 + log c2 – (log bc + log ac + log ab)

= log a2 b2 c2 – log (bc. .ab)

= log a2 b2 c– log a2 b2 c2  = 0. So, option (b) is correct

18. If log (m/n) + log (n/m) = log (m+n) then find true statement

(a)      m+n=1

(b)     m/n=2

(c)      m – n = 2

(d)     m2 – n2 = 4

log (m/n) + log (n/m) = log (m+n), or log {(m/n) X (n/m)} = log (m+n), or log1=log (m+n). or m+n=1. So, option (a) is correct

19. If loga3= 1/3, then find value of a

(a)    27

(b)    81

(c)    9

(d)    24.

loga3= 1/3, So, a1/3=3, or a=(3)3 = 27. So, option (a) is correct

20. Find the value of log2 (1/64)

(a)    6

(b)    -6

(c)    64

(d)    4.

log2 (1/64) = log2 (1/26) =  log2 1 – 6log2 2 = 0 – (6X 1) = -6 (as  log2 2= 1). So, option (b) is correct

21. logx(16/25) = -1/2, Find value of x

(a)    625/256

(b)    256/625

(c)    526/265

(d)    32/50

logx(16/25)=-1/2. Or x(-1/2) =16/25, or  1/{x(1/2)} =16/25, or x(1/2)} = 25/16, or x=252/162= 625/256. So, option (a) is correct

22. If logx10000 = -1/4, find x

(a)1/10
(b)1/100 
(c)1/20 
(d)1/1000 

logx10000 = -1/4, so, (10000)-1/4= x, or 1/ (10000)1/4 = x, or x= 1/{(104)}1/4 = 1/10.

So, option (a) is correct

23. Find value of log10 (0.00001)

(a)      – 5

(b)     1/5

(c)      – 4

(d)     5

log10 (0.00001) = log10 (1/100000) = log10 (1/105) = log10 10-5) = 5 log10 = -5 X1= – 5 .

So, option (a) is correct

24. If log10 x + log10y = z, then find value of x

(a)    z/y

(b)    10/3z

(c)    10z/y

(d)    yz

log10   x + log10  y = z, or Or, log10   (xy) = z,  10z = xy, x=10z/y. So, option (c) is correct

25. Find value of log10 5 assuming log10 2 = 0.3010

(a)    .4010

(b)    0.6911

(c)    0.6990

(d)    .6021.

log10  5 = log10 (10/2) = log10 10 – log10 2 = 1- 0.3010 =0.6990. So, option (c) is correct

26. Find value of (log5 3) x (log3 625)

(a)    1

(b)    2

(c)    3

(d)    4.

log3 x log3  625 = log 3 3 x log5  625 (by change of base) = 1 x log5  54 = log5  54 = 4 log5 5 = 4X1=4. So, option (d) is correct

27. If log(x2 6x + 10) = 0, then the value of x is

(a)    4

(b)    7

(c)    3

(d)    5.

log  (x2 – 6x + 10) = 0, Or, log( x2 – 6x + 10) = log 1, x2 – 6x + 10=1, or  x2 – 6x + 10 – 1 = 0  

Or, x2 – 6x + 9 = 0, Or, x2 – 3x – 3x + 9 = 0, Or, x (x – 3) – 3(x – 3) = 0, Or, (x – 3) (x – 3) = 0, or x = 3. So, option (c) is correct

28. Find x, if log43 + log4(x + 2) = 2

(a)    10/3

(b)    4/3

(c)    2/3

(d)    12/5

log4   3 + log4 (x + 2) = 2,  log4   {3 X (x+2)} =2, or, log4   {3x+6)} =2,

Or, 42 = 3x + 6  Or, 3x+ 6 = 16 Or, 3x = 16- 6 = 10 Or, x = 10/3. So, option (a) is correct

29.  If a2 + b2 = 23ab, evaluate log {(a+b)/5}

(a)    5

(b)    log(ab) /2

(c)    log(ab) /5

(d)    log(a+b) /4

a2 + b2 = 23ab, Or, a2 + b2 + 2ab = 23ab + 2ab, Or, (a + b)2 = 25ab, {(a+b)/5)}2=ab, or (a+b/5)=(ab) ½  

or log {(a+b/5)}=log {(ab) ½ } = ½ log ab = {log(ab)} /2. So, option (b) is correct

30.Evaluate {1/logab(abc)} + {1/logbc(abc)} + {1/logca(abc)}

(a)     0 (b)     1 (c)     2 (d)     3

{1/logab(abc)} + {1/logbc(abc)} + {1/logca(abc)}

= log abc (ab) +  log abc (bc) +  log abc (ca) = log abc (ab . bc . ca), = log abc (abc)2

= 2  log abc abc = 2.1 = 2. So, option (c) is correct

31. If log (2a – 3b) = log a – log b, find value of a

(a)    3b2/(2b – 1)

(b)    3b/2b – 1

(c)    2b2/(4b + 2)

(d)    2b2/2b – 1

log (2a – 3b) = log a – log b, Or, log (2a – 36) = log (a/b), Or, 2a – 3b = a/b

Or, 2ab – 3b2 = a, Or, 2ab – a = 3b2, Or, a(2b – 1) = 3b2, or a=3b2 / (2b – 1). So, option (a) is correct

32. If log (a+b/4) = 1/2 (log a + log b), then find value of (a/b + b/a)

(a)    18 (b)    14 (c)    15 (d)    10

log (a+b/4) = 1/2 (log a + log b), or log (a+b/4) = log (ab)1/2, or, (a+b/4) =(ab)1/2,

 or {(a+b)2}/16 = ab, Or, a2 + 2ab + b2 = 16ab, or, a2 + b2 = 14ab, (a2 + b2) / (ab) = 14, (a/b + b/a) =14. So, option (b) is correct